Package: pdmod 1.0.1

pdmod: Proximal/Distal Modeling Framework for Pavlovian Conditioning Phenomena

Fits a model of Pavlovian conditioning phenomena, such as response extinction and spontaneous recovery, and partial reinforcement extinction effects. Competing proximal and distal reward predictions, computed using fast and slow learning rates, combine according to their uncertainties and the recency of information. The resulting mean prediction drives the response rate.

Authors:Chloe Bracis

pdmod_1.0.1.tar.gz
pdmod_1.0.1.zip(r-4.5)pdmod_1.0.1.zip(r-4.4)pdmod_1.0.1.zip(r-4.3)
pdmod_1.0.1.tgz(r-4.5-x86_64)pdmod_1.0.1.tgz(r-4.5-arm64)pdmod_1.0.1.tgz(r-4.4-x86_64)pdmod_1.0.1.tgz(r-4.4-arm64)pdmod_1.0.1.tgz(r-4.3-x86_64)pdmod_1.0.1.tgz(r-4.3-arm64)
pdmod_1.0.1.tar.gz(r-4.5-noble)pdmod_1.0.1.tar.gz(r-4.4-noble)
pdmod_1.0.1.tgz(r-4.4-emscripten)pdmod_1.0.1.tgz(r-4.3-emscripten)
pdmod.pdf |pdmod.html
pdmod/json (API)

# Install 'pdmod' in R:
install.packages('pdmod', repos = c('https://cbracis.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 8 scripts 120 downloads 11 exports 1 dependencies

Last updated 7 years agofrom:86acb2f615. Checks:8 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-win-x86_64NOTEMar 25 2025
R-4.5-mac-x86_64NOTEMar 25 2025
R-4.5-mac-aarch64NOTEMar 25 2025
R-4.5-linux-x86_64NOTEMar 25 2025
R-4.4-win-x86_64OKMar 25 2025
R-4.4-mac-x86_64OKMar 25 2025
R-4.4-mac-aarch64OKMar 25 2025
R-4.4-linux-x86_64OKMar 25 2025
R-4.3-win-x86_64OKMar 25 2025
R-4.3-mac-x86_64OKMar 25 2025
R-4.3-mac-aarch64OKMar 25 2025

Exports:averageBySessioncalculateResponsecomputeModelfitModelisTimedVectormodelObjectiveFunctionTimedVectorTV_DAYTV_HOURTV_MINUTEverifyTimedVector

Dependencies:mco

pdmod

Rendered frompdmod.Rnwusingutils::Sweaveon Mar 25 2025.

Last update: 2014-03-28
Started: 2014-03-28

Readme and manuals

Help Manual

Help pageTopics
Proximal/Distal Modeling Frameworkpdmod-package pdmod
Average by sessionaverageBySession
Calculate response from the estimatecalculateResponse
Calculates proximal/distal modelcomputeModel
ConstantsConstants TV_DAY TV_HOUR TV_MINUTE
Fit model parametersfitModel
Is TimedVectorisTimedVector
Objective function to fit model parametersmodelObjectiveFunction
Plot modelplot.pdmod
Create a TimedVectorTimedVector
Verify TimedVectorverifyTimedVector